MATH4240: Stochastic Processes Tutorial 5

WONG, Wing Hong

The Chinese University of Hong Kong

whwong@math.cuhk.edu.hk

1 March, 2021

Let X_n , $n \ge 0$ be an irreducible birth and death chain on nonnegative integers with birth probability $p_x > 0$ for $x \ge 0$ and death probability $q_y > 0$ for $y \ge 1$. Set $\gamma_0 = 1$ and $\gamma_y = \frac{q_1 \cdots q_y}{p_1 \cdots p_y}$ for $y \ge 1$. Recall that an irreducible birth and death chain on $\{0, 1, 2, \dots\}$ is recurrent if and only if

$$\sum_{x=1}^{\infty} \gamma_x = \infty$$

Consider the birth and dearh chain on $\{0,1,2,\dots\}$ defined by

$$p_x = \frac{x+2}{2(x+1)}$$

and

$$q_x=\frac{x}{2(x+1)}.$$

Then, the chain is transient since $\frac{q_x}{p_x} = \frac{x}{x+2}$, and it follows that

$$\gamma_x = \frac{q_1 \dots q_x}{p_1 \dots p_x} = \frac{1 \cdot 2 \dots \cdot x}{3 \cdot 4 \dots \cdot (x+2)} = \frac{2}{(x+1)(x+2)} = 2(\frac{1}{x+1} - \frac{1}{x+2}).$$

Thus,

$$\sum_{x=1}^{\infty} \gamma_x = 2 \sum_{x=1}^{\infty} \left(\frac{1}{x+1} - \frac{1}{x+2} \right)$$

= $2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots\right)$
= $2 \cdot \frac{1}{2} = 1.$

We conclude that the chain is transient.

Now,
$$\gamma_x = 2(\frac{1}{x+1} - \frac{1}{x+2})$$
. Hence,

$$P_x(T_a < T_b) = \frac{\sum_{y=x}^{b-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y} = \frac{2(\frac{1}{x+1} - \frac{1}{b+1})}{2(\frac{1}{a+1} - \frac{1}{b+1})} = \frac{(a+1)(b-x)}{(x+1)(b-a)}.$$

Recall that

$$P_x(T_a < T_b) = \frac{\sum_{y=x}^{b-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y}, \quad a < x < b.$$

Thus,

$$P_{x}(T_{0} < T_{n}) = \frac{\sum_{y=x}^{n-1} \gamma_{y}}{\sum_{y=0}^{n-1} \gamma_{y}} = 1 - \frac{\sum_{y=0}^{x-1} \gamma_{y}}{\sum_{y=0}^{n-1} \gamma_{y}},$$

for 0 < x < n.

Examples on birth and death chain

ŀ

Note that for x > 0, $1 \le T_{x+1} < T_{x+2} < \cdots$. Hence $\{T_0 < T_n\}_{n=1}^{\infty}$ forms a nondecreasing sequence of events. By continuity of the probability, we have for $x \ge 1$,

$$\begin{aligned} p_{x0} &= P_x(T_0 < \infty) \\ &= P_x(\bigcup_{n=1}^{\infty} \{T_0 < T_n\}) \\ &= \lim_{n \to \infty} P_x(T_0 < T_n) \\ &= 1 - \lim_{n \to \infty} \frac{\sum_{y=0}^{x-1} \gamma_y}{\sum_{y=0}^{n-1} \gamma_y}. \end{aligned}$$

Thus,

$$\rho_{x0} = 1 - \frac{\sum_{y=0}^{x-1} \gamma_y}{\sum_{y=0}^{\infty} \gamma_y} = \frac{\sum_{y=x}^{\infty} \gamma_y}{\sum_{y=0}^{\infty} \gamma_y} = \frac{\frac{2}{x+1}}{2} = \frac{1}{x+1}.$$

Remark. $q_x < p_x$ for all x does not imply the chain is transient. For example, one may take $\gamma_x = 1/2x$ by choosing $q_1/p_1 = 1/2$ and $q_n/p_n = (n-1)/n$ for $x \ge 2$. Then,

$$\sum_{x=0}^{\infty} \gamma_x = \infty$$

and thus the chain is recurrent.

On the contrary, given an irreducible birth and death chain on nonnegative integers, if $p_x \le q_x$ for $x \ge 1$, then

$$\sum_{y=0}^{\infty} \gamma_y = 1 + \sum_{y=1}^{\infty} \frac{q_1 \cdots q_y}{p_1 \cdots p_y} \ge 1 + \sum_{y=1}^{\infty} 1^y = \infty.$$

This implies that $\rho_{10} = 1$. By one-step argument, we have

$$\rho_{00} = P(0,0)\rho_{00} + P(0,1)\rho_{10} = r_0\rho_{00} + p_0.$$

Since $p_0 + r_0 = 1$ and $p_0 > 0$, we have $\rho_{00} = 1$, that is, state 0 is recurrent. As the chain is irreducible, it is recurrent.

Consider a branching chain such that f(1) < 1. If f(0) > 0, then for any x > 0,

$$P(x,0) = f(0)^x > 0.$$

Since 0 is absorbing, any positive x is transient. If f(0) = 0, then X_n is nondecreasing, that is, $\rho_{xy} = 0$ for x > y. Moreover, for x > 0,

$$\rho_{xx} = P(x, x) = f(1)^x < 1.$$

Hence any positive x is transient.

Consider a branching chain with f(0) = f(3) = 1/2. The mean number of offspring of one given particle is $\mu = 3/2 > 1$. Hence the extinction probability ρ is the root of the equation

$$\frac{1}{2} + \frac{1}{2}t^3 = t$$

lying in [0,1). We can rewrite this equation as

$$(t-1)(t^2+t-1)=0.$$

This equation has three roots, namely, 1, $\frac{-1+\sqrt{5}}{2}$, and $\frac{-1-\sqrt{5}}{2}$. Consequently, $\rho = \frac{-1+\sqrt{5}}{2}$.

Examples on branching chain 3

Consider a branching chain. We would like to show $E_x[X_n] = x\mu^n$. The conclusion holds trivially for x = 0. Now, for $x \ge 1$,

$$\sum_{y} yP(x,y) = E_x(X_1) = E(\xi_1 + \xi_2 + \dots + \xi_x) = xE(\xi_1) = \mu x.$$

Now,

$$E_{x}(X_{n}) = \sum_{y \in S} yP(X_{n} = y)$$

=
$$\sum_{y \in S} y \left(\sum_{x \in S} P(x, y)P(X_{n-1} = x) \right)$$

=
$$\sum_{x \in S} P(X_{n-1} = x) \left(\sum_{y \in S} yP(x, y) \right)$$

=
$$\mu \sum_{x \in S} xP(X_{n-1} = x) = \dots = x\mu^{n}.$$

We show that the chain is irreducible if and only if f(0) > 0 and f(0) + f(1) < 1.

If f(0) = 0, then P(x, x - 1) = f(0) = 0 for $x \ge 1$. That implies $\rho_{xy} = 0$ for $x > y \ge 0$. Hence the chain is not irreducible.

If f(0) + f(1) = 1, then P(x, y) = f(y - x + 1) = 0 for $1 \le x < y$. That implies $\rho_{xy} = 0$ for $1 \le x < y$. Hence the chain is not irreducible.

This proves the "only if" part.

Examples on queuing chain

Now, suppose f(0) > 0 and f(0) + f(1) < 1. For $x > y \ge 0$,

$$\rho_{xy} \ge P(x, x-1)P(x-1, x-2) \cdots P(y+1, y) = (f(0))^{x-y} > 0.$$

Since f(0) + f(1) < 1, there exists $x_0 \ge 2$ such that $f(x_0) > 0$. Then for $n \ge 0$,

$$egin{aligned} &
ho_{0,x_0+n(x_0-1)} \geq P(0,x_0)P(x_0,x_0+(x_0-1)) \ & P(x_0+(x_0-1),x_0+2(x_0-1))\cdots \ & P(x_0+(n-1)(x_0-1),x_0+n(x_0-1)) \ &= f(x_0)^{n+1} > 0. \end{aligned}$$

Now for any states x, y, there exists n such that $x_0 + n(x_0 - 1) > y$. Since x leads to 0, 0 leads to $x_0 + n(x_0 - 1)$, $x_0 + n(x_0 - 1)$ leads to y, x also leads to y. Hence the chain is irreducible. This proves the "if" part.